Optimization!
Optimizing Queries and workloads

Workload = \langle \text{Query}, \text{Frequency of query} \rangle
Example:

Basic SFW queries

Workload description

```
SELECT pname
FROM    Product
WHERE year = ? AND category =?
```

```
SELECT pname
FROM    Product
WHERE year = ? AND Category =?
AND      manufacturer = ?
```

Lower cost (query and update cost)

1. How to execute? Sort, Hash first …?
2. Maintain indexes for Year? Category? Manufacturer?
3. For query, check multiple indexes?
4. What’s cost of maintaining index?
5. Use multiple machines? ...

Intuition

Manufacturers likely most **Selective**.

Many more manufacturers than Categories. Maintain index, if this query happens a lot.
Optimization

Roadmap

1. For SFW, Joins queries
 b. Pre-build an index? B+ tree, Hash?

2. What statistics can I keep to optimize?
 a. E.g. Selectivity of columns, values

Build Query Plans

Analyze Plans

Cost in I/O, resources?
To query, maintain?
1. Nested Loop Joins
1. RECAP: Joins

2. Nested Loop Join (NLJ)

3. Block Nested Loop Join (BNLJ)

4. Index Nested Loop Join (INLJ)
RECAP: Joins
Joins: Example

\[R \bowtie S \]

\[
\begin{align*}
\text{SELECT } & R.A, B, C, D \\
\text{FROM } & R, S \\
\text{WHERE } & R.A = S.A
\end{align*}
\]

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)
Joins: Example

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)

```
SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A
```
Joins: Example

```
SELECT R.A, B, C, D
FROM R, S
WHERE R.A = S.A
```

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)
Joins: Example

SELECT R.A, B, C, D
FROM R, S
WHERE R.A = S.A

Example: Returns all pairs of tuples $r \in R, s \in S$ such that $r.A = s.A$
Joins: Example

\[R \bowtie S \]

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)

\[
\begin{array}{cccc}
R & & S & \\
A & B & C & A & D \\
1 & 0 & 1 & 3 & 7 \\
2 & 3 & 4 & 2 & 2 \\
2 & 5 & 2 & 2 & 3 \\
3 & 1 & 1 & & \\
\end{array}
\]
Semantically: A Subset of the Cross Product

\[
\text{SELECT } R.A, B, C, D \\
\text{FROM } R, S \\
\text{WHERE } R.A = S.A
\]

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)

Can we actually implement a join in this way?
Nested Loop Joins
Notes

We consider “IO aware” algorithms: care about disk IO

Given a relation R, let:
• $T(R) = \#$ of tuples in R
• $P(R) = \#$ of pages in R

Recall that we read / write entire pages with disk IO

We’ll see lots of formulae from now
⇒ Hint: Focus on how it works. Much easier to derive from 1st principles (vs recalling formula soup)
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:
for r in R:
 for s in S:
 if $r[A] == s[A]$:
 yield (r,s)
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

for r in R:
 for s in S:
 if $r[A] == s[A]$:
 yield (r,s)

Cost:

$P(R)$

1. Loop over the tuples in R

Note that our IO cost is based on the number of *pages* loaded, not the number of tuples!
Nested Loop Join (NLJ)

Cost:

\(P(R) + T(R) \times P(S) \)

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S

Have to read all of S from disk for every tuple in R!
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:
for r in R:
 for s in S:
 if $r[A] == s[A]$:
 yield (r, s)

Cost:
$P(R) + T(R) \times P(S)$

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S
3. Check against join conditions
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:
for r in R:
 for s in S:
 if $r[A] == s[A]$:
 yield (r,s)

What would OUT be if our join condition is trivial (if TRUE)?

OUT could be bigger than $P(R)\times P(S)$... but usually not that bad

Cost:

$P(R) + T(R)\times P(S) + OUT$

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S
3. Check against join conditions
4. Write out (to page, then when page full, to disk)
Nested Loop Join (NLJ)

Compute \(R \bowtie S \) on \(A \):
for \(r \) in \(R \):
 for \(s \) in \(S \):
 if \(r[A] == s[A] \):
 yield \((r, s)\)

Cost:
\[P(R) + T(R)*P(S) + \text{OUT} \]

What if \(R \) ("outer") and \(S \) ("inner") switched?
\[P(S) + T(S)*P(R) + \text{OUT} \]

Outer vs. inner selection makes a huge difference-
DBMS needs to know which relation is smaller!
IO-Aware Approach
Next week
- “Putting it all together” for big systems

Upcoming talks
- Nov 9: Girish Baliga How Uber scales user/driver data with prestoDB
- Nov 9: Michael Li How Coinbase works with user data and blockchain

Ed post on talks this AM
- DataOps and ETL/ELT for a modern data stack
- Is data a 100b$ or 1T$ industry for the next decade?
Intuition:

Block Nested Loop Joins

Census (SSN, Address, ...) TaxInfo (SSN, TaxPaid, ...)

For 1 Billion people
Goal: Compute Census JOIN TaxInfo

Data stored in RowStores, 1000 tuples/page (million pages)

Given: B + 1 buffer space
Idea: Use B-1 pages for Census, 1 page each for TaxInfo and output

Steps: Repeat till done
Read B-1 pages from Census into Buffer
Read 1 page from TaxInfo
Partial Join into 1 output page
Block Nested Loop Join (BNLJ)

Given $B+1$ pages of memory
(For $B \ll P(R), P(S)$)

Cost:

1. Load in $B-1$ pages of R at a time (leaving 1 page each free for S & output)

Note: There could be some speedup here due to the fact that we're reading in multiple pages sequentially however we'll ignore this here!

Compute $R \bowtie S$ on A:

for each $B-1$ pages pr of R:
 for page ps of S:
 for each tuple r in pr:
 for each tuple s in ps:
 if $r[A] == s[A]$:
 yield (r,s)
Block Nested Loop Join (BNLJ)

Given $B+1$ pages of memory

Cost:

$P(R) + \frac{P(R)}{B-1} \cdot P(S)$

1. Load in $B-1$ pages of R at a time (leaving 1 page each free for S & output)

2. For each $(B-1)$-page segment of R, load each page of S

Note: Faster to iterate over the smaller relation first!

Compute $R \bowtie S$ on A:

for each $B-1$ pages pr of R:

for page ps of S:

for each tuple r in pr:

for each tuple s in ps:

if $r[A] == s[A]$

yield (r,s)

How many R pages to read?

$P(R)$

How many times is each S page read?

$P(R)/(B-1)$
Block Nested Loop Join (BNLJ)

Given $B+1$ pages of memory

Cost:

$$P(R) + \frac{P(R)}{B-1} P(S)$$

1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
2. For each (B-1)-page segment of R, load each page of S
3. **Check against the join conditions**

Compute $R \bowtie S$ on A:

for each B-1 pages pr of R:

 for each page ps of S:

 for each tuple r in pr:

 for each tuple s in ps:

 if $r[A] == s[A]$:

 yield (r,s)

BNLJ can also handle non-equality constraints
Block Nested Loop Join (BNLJ)

Given $B+1$ pages of memory

Cost:

$$P(R) + \frac{P(R)}{B-1} P(S) + \text{OUT}$$

1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
2. For each $(B-1)$-page segment of R, load each page of S
3. Check against the join conditions
4. Write out

Compute $R \bowtie S$ on A:

for each B-1 pages pr of R:
 for page ps of S:
 for each tuple r in pr:
 for each tuple s in ps:
 if $r[A] == s[A]$:
 yield (r,s)
BNLJ vs. NLJ: Benefits of IO Aware

In BNLJ, by loading larger chunks of R, we minimize the number of full disk reads of S

- We only read all of S from disk for every \((B-1)\)-page segment of R!
- Still the full cross-product, but more done only in memory

\[
P(R) + T(R)P(S) + \text{OUT} \quad \text{NLJ} \\
P(R) + \frac{P(R)}{B-1}P(S) + \text{OUT} \quad \text{BNLJ}
\]

BNLJ is faster by roughly \(\frac{(B-1)T(R)}{P(R)}\)!
BNLJ vs. NLJ: Benefits of IO Aware

- **Example:**
 - **R:** 500 pages
 - **S:** 1000 pages
 - **100 tuples/page**
 - **We have 12 pages of memory (B = 11)**

- **NLJ:**
 \[
 \text{Cost} = 500 + 50,000 \times 1000 = 50 \text{ Million IOs} \approx 140 \text{ hours}
 \]

- **BNLJ:**
 \[
 \text{Cost} = 500 + \frac{500 \times 1000}{10} = 50 \text{ Thousand IOs} \approx 0.14 \text{ hours}
 \]

A very real difference from a small change in the algorithm!
Example NLJ vs. BNLJ: Steel Cage Match

Example: \(P(R) = 1000, P(S) = 500, \)
\(100 \text{ tuples/page} \Rightarrow \)
\(T(R) = 1000 \times 100, \)
\(T(S) = 500 \times 100 \)

\[
\begin{array}{|c|c|}
\hline
& B + 1 = 100 & B + 1 = 20 \\
& (\text{i.e., } B = 99) & (\text{i.e., Buffer } B = 19) \\
\hline
\text{NLJ} & (1000 + 1000 \times 100 \times 500 + \text{OUT}) & (1000 + 1000 \times 100 \times 500 + \text{OUT}) \\
& \Rightarrow \text{IO} = \sim 5,001,000 + \text{OUT} & \Rightarrow \text{IO} = \sim 5,001,000 + \text{OUT} \\
\hline
\text{BNLJ} & (500 + 1000 \times 500/(99-1)) & (500 + 1000 \times 500/(19-1)) \\
& \Rightarrow \text{IO} = \sim 5.6\text{K} + \text{OUT} & \Rightarrow \text{IO} = 28.2\text{K IOs} + \text{OUT} \\
\hline
\end{array}
\]
Smarter than Cross-Products
What you will learn about in this section

0. Index Joins
1. Sort-Merge Join
2. HashPartition Joins
Smarter than Cross-Products: From Quadratic to Nearly Linear

All joins computing the *full cross-product* have a quadratic term.

- For example we saw:

 $\text{NLJ} \quad P(R) + T(R)P(S) + \text{OUT}$

 $\text{BNLJ} \quad P(R) + \frac{P(R)}{B-1} P(S) + \text{OUT}$

Now we’ll see some (nearly) linear joins:

- $\sim O(P(R) + P(S) + \text{OUT})$

We get this gain by *taking advantage of structure*—moving to equality constraints (“equijoin”) only!
Example

Census (SSN, Address, ...)
TaxInfo (SSN, TaxPaid, ...)

For 1 Billion people

Goal: Compute Census JOIN TaxInfo

Data stored in RowStores, 1000 tuples/page (million pages)

BNLJ – See all the extra work BNLJ is doing to JOIN for 432-567-789, ...
Index Nested Loop Join (INLJ)

Cost:

\[P(R) + T(R) \times L + \text{OUT} \]

Where \(L \) is the IO cost to access each distinct value in index

Recall: \(L \) is usually small (e.g., 3-5)

→ We can use an index (e.g. B+ Tree) to avoid full cross-product!

→ Much better than quadratic. But what if \(T(R) = 1 \) billion?
Pre-process data before JOINing

- Sort(Census), Sort(TaxInfo) on SSN
- Merge sorted pages

- Hash(Census), Hash(TaxInfo) on SSN
- Merge partitioned pages
Speedy Joins: With Sorting and Hashing

- **Given enough memory**, SortMergeJoin and HashJoins cost

 \[\sim 3 \times (P(R)+P(S)) + \text{OUT}\]

 [For smaller RAM and “worse” data distribution, \(\sim k \times (P(R)+P(S)) + \text{OUT}\), for ‘small’ \(k = 3...5\)]

- Hash Joins are highly parallelizable
- Sort-Merge less sensitive to data skew and result is sorted

⇒ **Big takeaway**: IO-aware join algorithms

- Massive difference vs brute-force
- Nearly linear vs quadratic (or worse)
0. Intuition for smarter joins

1. Sort-Merge Join

2. HashPartition Joins
Sort-Merge Join (SMJ)
What you will learn about in this section

1. Sort-Merge Join
2. “Backup” & Total Cost
3. Optimizations
Sort Merge Join (SMJ)

Goal: Execute $R \bowtie S$ on A

Key Idea:
Sort R and S [with external sort]
Merge-scan over them!

IO Cost:
- *Sort phase:* $\text{Sort}(R) + \text{Sort}(S)$
- *Merge / join phase:* $\sim \text{P}(R) + \text{P}(S) + \text{OUT}$
SMJ Example: $R \bowtie S$ with 3 page buffer

For simplicity: Let each page be one tuple. Let the first column be join key. (E.g., R has 3 pages with 1 tuple each)

We show the file HEAD, which is the next value to be read!
SMJ Example: $R \bowtie S$ with 3 page buffer

1. Sort R and S (on 1st column)
SMJ Example: $R \bowtie S$ with 3 page buffer

2. Scan and “merge” on join key!
SMJ Example: $R \bowtie S$ with 3 page buffer

2. Scan and “merge” on join key!
SMJ Example: $R \bowtie S$ with 3 page buffer

2. Scan and “merge” on join key!
SMJ Example: $R \bowtie S$ with 3 page buffer

2. Done!
What happens with duplicate join keys?
Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…
Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…
Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…
Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge...

Have to “backup” in the scan of S and read page we’ve already read!
Backup

- At best, no backup → scan takes $P(R) + P(S)$ reads
 - For ex: if no duplicate values in join attribute

- At worst (e.g. full backup each time), scan could take $P(R) \times P(S)$ reads!
 - For ex: if all duplicate values in join attribute, i.e. all tuples in R and S have the same value for the join attribute
 - Roughly: For each page of R, we’ll back up and read each page of S…

- Often not that bad however, plus we can:
 - Leave more data in buffer (for larger buffers)
 - Can try other algorithms
SMJ: Total cost

- Cost of SMJ is **cost of sorting** R and S...

- Plus the **cost of scanning**: ~P(R)+P(S)
 - Because of *backup*: in worst case P(R)*P(S); but this would be very unlikely

- Plus the **cost of writing out**: OUT

\[
\sim \text{Sort}(P(R)) + \text{Sort}(P(S)) + P(R) + P(S) + \text{OUT}
\]

Recall: Sort(N) ≈ 2N \left(\left\lceil \log_{2\left(B+1 \right)} \frac{N}{2} \right\rceil + 1 \right)

Note: this is using repacking, where we estimate that we can create initial runs of length \(\sim 2(B+1) \)
Un-Optimized SMJ

Sort Phase
(Ext. Merge Sort)

Merge / Join Phase

Given \(B+1 \) buffer pages

Unsorted input relations

Joined output file created!
Simple SMJ Optimization

Sort Phase (Ext. Merge Sort)
- Given $B+1$ buffer pages
- Unsorted input relations
- Split & sort
- Merge
- <= B total runs

Merge / Join Phase
- B-Way Merge / Join
- Joined output file created!

Given $B+1$ buffer pages
Takeaway points from SMJ

If input already sorted on join key, skip the sorts.

• SMJ is basically linear.
• Nasty but unlikely case: Many duplicate join keys.

SMJ needs to sort **both** relations
Example SMJ Number of passes

Consider \(P(R) = 1000, P(S) = 500 \)

Case 1: Num passes for R (for \(B+1 = 100 \))

\[
K = \lceil \log_{99} \frac{1000}{2 \times 100} \rceil + 1 = 2
\]

Case 2: Num passes for R (for \(B+1 = 20 \))

\[
K = \lceil \log_{19} \frac{1000}{2 \times 20} \rceil + 1 = 3
\]

(Repeat for S, and you get \(k = 2 \) and \(3 \))

Reminder: More Buffer? Fewer passes for Sorting

Recall: Sort(N) \(\approx 2N \left(\lceil \log \frac{N}{2(B+1)} \rceil + 1 \right) \)

Note: this is using repacking, where we estimate that we can create initial runs of length \(\sim 2(B+1) \)
Example SMJ vs. BNLJ: Steel Cage Match

Consider \(P(R) = 1000, P(S) = 500 \)

<table>
<thead>
<tr>
<th>Buffer = 100</th>
<th>Buffer = 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i.e., (B+1=100))</td>
<td>(i.e., (B+1=20))</td>
</tr>
<tr>
<td>SMJ</td>
<td>BNLJ</td>
</tr>
<tr>
<td>(\sim) Sort((P(R))) + Sort((P(S))) + (P(R)) + (P(S)) + OUT</td>
<td>(\sim) Sort((P(R))) + Sort((P(S))) + (P(R)) + (P(S)) + OUT</td>
</tr>
<tr>
<td>(\frac{P(R)}{B-1}) (P(S)) + OUT</td>
<td>(\frac{P(R)}{B-1}) (P(S)) + OUT</td>
</tr>
<tr>
<td>(\sim) Sort((P(R))) + Sort((P(S))) + (P(R)) + (P(S)) + OUT</td>
<td>(\sim) Sort((P(R))) + Sort((P(S))) + (P(R)) + (P(S)) + OUT</td>
</tr>
<tr>
<td>(Sort (R) and (S) in (k=2) passes: (21000k + 2500k) = 6000)</td>
<td>(Sort (R) and (S) in (k=3) passes: (21000k + 2500k) = 9000)</td>
</tr>
<tr>
<td>Merge: 1000 + 500 = 1500 IOs)</td>
<td>Merge: 1000 + 500: 1500 IOs)</td>
</tr>
<tr>
<td>(\Rightarrow) IO = 7500 IOs + OUT</td>
<td>(\Rightarrow) IO = 10,500 IOs + OUT</td>
</tr>
<tr>
<td>(\frac{P(R)}{B-1}) (P(S)) + OUT</td>
<td>(\frac{P(R)}{B-1}) (P(S)) + OUT</td>
</tr>
<tr>
<td>(500 + 1000*500/(99-1))</td>
<td>(500 + 1000*500/(19-1))</td>
</tr>
<tr>
<td>(\Rightarrow) IO = (\sim)5.6K+OUT</td>
<td>(\Rightarrow) IO = 28.2K IOs +OUT</td>
</tr>
</tbody>
</table>

SMJ is \(\sim \) linear vs. BNLJ is quadratic… But it’s all about the memory.
0. Intuition for smarter joins

1. Sort-Merge Join

2. HashPartition Joins
Pre-process data before JOINing

- **SortMergeJoin**
 - Census table (row store)
 - TaxInfo table (row store)
 - Sort(Census), Sort(TaxInfo) on SSN
 - Merge sorted pages

- **HashPartitionJoin**
 - Census table (row store)
 - TaxInfo table (row store)
 - Hash(Census), Hash(TaxInfo) on SSN
 - Merge partitioned pages
Hash Join (HJ) or Hash Partition Join (HPJ)
Hash Join

- **Goal:** Execute \(R \bowtie S \) on \(A \)

- **Key Idea:**
 - Partition \(R \) and \(S \) into buckets by hashing the join attribute
 - Join the pairs of (small) matching buckets!
HPJ Phase 1: Hash Partitioning

Goal: For each relation, partition relation into **buckets** such that if \(h_B(t.A) = h_B(t'.A) \) they are in the same bucket

Given B+1 buffer pages, we partition into B buckets:
- We use B buffer pages for output (one for each bucket), and 1 for input
 - For each tuple \(t \) in input, copy to buffer page for \(h_B(t.A) \)
 - When page fills up, write to disk.
HPJ Phase 1: Partitioning

We partition into $B = 2$ buckets using hash function h_2 so that we can have one buffer page for each partition (and one for input).

Given $B+1 = 3$ buffer pages.

For simplicity, we'll look at partitioning one of the two relations- we just do the same for the other relation!

Note our new convention: pages each have two tuples (one per row).
1. We read pages from R into the “input” page of the buffer…

Given $B+1 = 3$ buffer pages
2. Then we use **hash function** h_2 to sort into the buckets, which each have one page in the buffer.

Given $B+1 = 3$ buffer pages.
HPJ Phase 1: Partitioning

2. Then we use hash function h_2 to sort into the buckets, which each have one page in the buffer.
3. We repeat until the buffer bucket pages are full…

Given $B+1 = 3$ buffer pages
3. We repeat until the buffer bucket pages are full…

Given $B+1 = 3$ buffer pages
HPJ Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…
3. We repeat until the buffer bucket pages are full… then flush to disk.
HPJ Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full… then flush to disk

Given $B+1 = 3$ buffer pages
HPJ Phase 1: Partitioning

Note that collisions can occur!

Given \(B + 1 = 3 \) buffer pages

Collision!!!

\[h_2(5) = h_2(3) = 1 \]
HPJ Phase 1: Partitioning

Finish this pass…

Given $B+1 = 3$ buffer pages
HPJ Phase 1: Partitioning

Finish this pass...

Given $B+1 = 3$ buffer pages.
HPJ Phase 1: Partitioning

Finish this pass…

Given \(B+1 = 3 \) buffer pages

Collision!!
HPJ Phase 1: Partitioning

Finish this pass…

Given \(B+1 = 3 \) buffer pages
Given $B+1 = 3$ buffer pages.

We wanted buckets of size $B-1 = 1$... however we got larger ones due to:

1. Duplicate join keys
2. Hash collisions
HPJ Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

To take care of larger buckets caused by (2) hash collisions, we can just do another pass!

What hash function should we use?

Do another pass with a different hash function, h'_2, ideally such that:

$$h'_2(3) \neq h'_2(5)$$
HPJ Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

To take care of larger buckets caused by (2) hash collisions, we can just do another pass!

What hash function should we use?

Do another pass with a different hash function, h'_2, ideally such that:

$$h'_2(3) \neq h'_2(5)$$
HPJ Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

What about duplicate join keys? Unfortunately this is a problem… but usually not a huge one.

We call this unevenness in the bucket size **skew**
Now that we have partitioned R and S...
HPJ Phase 2: Partition Join

Now, we just join pairs of buckets from R and S that have the same hash value to complete the join!
HPJ: High-level procedure

2. Per-Partition Join: JOIN tuples in same partition

Don’t have to join the others! E.g. \((S_1 \text{ and } R_2)\)!
Given enough buffer pages…

- **Hash Partition** requires reading + writing each page of R,S
 - → 2(P(R)+P(S)) IOs

- **Partition Join** (with BNLJ) requires reading each page of R,S
 - → P(R) + P(S) IOs

HJ takes \(\sim 3(P(R)+P(S)) + \text{OUT} \) IOs!
SMJ vs HPJ Joins Summary

• **Given enough memory**, both SMJ and HJ have performance:

\[\sim 3(P(R)+P(S)) + OUT \]

[For smaller RAM and “worse” data distribution,
\[\sim k^*(P(R)+P(S)) + OUT, \text{ for small } k = 3\ldots5)\]

• Hash Joins are highly parallelizable

• Sort-Merge less sensitive to data skew and result is sorted

⇒ **Big takeaway**: IO-aware join algorithms
 • Massive difference vs brute-force
 • Nearly linear vs quadratic (or worse)